If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+8x=192
We move all terms to the left:
x^2+8x-(192)=0
a = 1; b = 8; c = -192;
Δ = b2-4ac
Δ = 82-4·1·(-192)
Δ = 832
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{832}=\sqrt{64*13}=\sqrt{64}*\sqrt{13}=8\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{13}}{2*1}=\frac{-8-8\sqrt{13}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{13}}{2*1}=\frac{-8+8\sqrt{13}}{2} $
| 10(x+8)-11=29 | | 1420=2.5x | | 10x-84=26+5x | | 4(a-3)2=36 | | 7(x+14)=147 | | 〖10a〗^2+7a-12=0 | | 5-3x=8x+1 | | m=8+5m | | -x+4=-4+3x | | 6(m-4)=16-2m | | 6(3x+16)=24 | | 2(x+14)+6=54 | | 4b+2=54 | | 16x-13+83=263 | | 21(2−x)+12x=44;x= | | 7t+7=90 | | n2=6n | | 7t+7+9t-11=360 | | u/5 −2=0 | | v.2=-6 | | u/5−2=0 | | 7t+7+9t-11=90 | | -4x-9=-5x+3 | | v2=-6 | | 34+(4x+8)=180 | | 5(x+1)+55=90 | | -4x-9=-5x=+3 | | 34+(4x-8)=280 | | –3x–4=23 | | f/3+5=41 | | 2x+4=2x+3x-10-10 | | -6(2x+6)=-7 |